Estimating the 'Return on Investment' in natural infrastructure:

Rio Camboriú watershed, Santa Catarina State, Brazil

Timm Kroeger

Central Science Program, The Nature Conservancy

ACES 2014 | 8-12 Dec. 2014 | Arlington, VA, USA

Pop: 170,000 year-round

High season (New Year-Feb): Pop >800,000

The Situation

No large-scale water storage in watershed

 High water loss for frequent filter and pipe flushing at treatment plant, due to high sediment levels

 Expected near-future water supply shortfalls during high demand

Flooding; low base flows during dry spells

Problem № 1: Livestock entering river

Problem № 2: Dirt roads

Watershed Conservation Program

Created 2009; interventions since 2012.

Foci:

- Water quality (sediment)
 - → reduce treatment cost & increase supply
- Flow regulation
 - → avoid alternative measures
- Conservation of threatened Atlantic Forest (highly biodiverse; ~10% of historic extent left in Brazil)

Interventions

- Fencing: riparian areas and conserved/ restored forest
- Active forest restoration

- Dirt road BMPs
- Pasture terracing

Priority areas

Why ROI analysis?

- Limited conservation budgets
- Making the business case
- Scale up

The Nature Conservancy

WHERE REFORESTATION **CAN REDUCE SEDIMENT** BY 10 PERCENT

WHERE RIPARIAN **CONSERVATION CAN REDUCE SEDIMENT BY 10 PERCENT**

CONSERVATION AREA

> 10,000 hectares

1,000 - 10,000 hectares

(Color indicates scale of intervention required)

ROI of PWS programs

>280 PWS programs (active & in development)

BUT:

- Only 10 "credible" valuation studies (Ferraro et al., 2012)
- Only 5 credible ROI analyses

...for forest hydrologic services projects in

developing countries

This is a problem!

Camboriu ROI analysis

- 2 ROI measures:
 - 1) Sediment reduction at intake point Watershed conservation cost
 - = Cost-effectiveness of PWS w.r.t sediment ("tons/\$" or "gm TSS/L /\$")
 - 2) $\frac{Avoided\ water\ treatment\ cost}{Watershed\ conservation\ cost}$
 - = ROI of PWS w.r.t. sediment ("\$/\$")
- Predictive analysis

Methodology

"Credible" ROI analysis:

Counterfactual thinking/
Attribution!

Intervention

Ecosystem Structure

Ecosystem Functions

Ecosystem Services

Camboriu ROI analysis

Intervention Empirical observation & modeled land cover change (w/ program & counterfactual) **Ecosystem Structure Ecosystem Functions** ES production function (SWAT) **Ecosystem Services** Empirical water treatment **Benefits** cost analysis Values Compare to **Program costs**

Camboriu ROI analysis

Q: How do reduced sediment loads affect water treatment?

Ecosystem structure: Land cover

Map past and current land cover

- 2003, 2008, 2012 (2 m resolution)
- Cover classification based on SWAT needs and data availability (e.g., sediment export coefficients)
- Used very fine detail imagery 60 cm Pansharpened multispectral
- 6 Land-cover Classes

Land cover change

Estimate land cover change model

- Idrisi Land Change Modeler (LCM for ArcGIS 2.0)
 - Train model on 2008 and 2012 covers; (2903)
 - Iterative estimation thru 2025 to capture impact of LCC and conservation on neighboring parcels
 - Variables included (besides land covers):

Distance from (new) urban

Distance from agricultural lands

Distance from roads

Distance from any kind of conversion

Elevation

Slope

Evidence likelihood of change

Recalculated dynamically

Land cover change

Predict land cover in 2025

- Without conservation program
 - Assume recent past land cover changes will continue
 - Set disturbed variables as dynamic (2018, 2021, 2025)
- With conservation program
 - Add protection constraints/conservation incentives
 - Incorporate timing of interventions

SWAT modeling

SWAT modeling

- SWAT version 2012
- Calibration using existing and new monitoring infrastructure
- Run on high-resolution land covers (2 m)
- For PWS and counterfactual land cover scenarios
 - Difference in sediment concentrations attributed to PWS

Valuation of service gains

- Benefits dominated by reduced sludge disposal and water loss
- Approx. 15 % of treated water is lost in the treatment process

Volume used for cleaning the system	m³/yr	2.800.000
Volume used for filter cleaning	m³/yr	2.500.000
Sludge generated	tons/yr	217.000
Dredging	\$/yr	8.700
Pumping (power)	\$/yr	610.000
Chemicals	\$/yr	276.000
Water used for cleaning the system	\$/yr	780.000
Sludge disposal	\$/yr	5.650.000

Source: EMASA

 Working with water plant staff to estimate avoided costs from estimated sediment reductions (compared to counterfactual)

The Team

- **Timothy Boucher** & **Jonathan Fisher** *The Nature Conservancy Central Science Program*
- Claudio Klemz & Eileen Acosta The Nature Conservancy Atlantic Forest and Central Savannas Program
- **Paulo Petry** The Nature Conservancy Latin America Region Science Program
- **Everton Blainski** & **Luis Garbossa** Centro de Informações de Recursos Ambientais e de Hidrometeorologia, Florianopolis, Santa Catarina, Brasil
- **Andre Targa Cavassani** The Nature Conservancy Latin America Region Ecosystem Services Program
- Rafaela Comparim Santos & Kelli Dacol Empresa Municipal de Água e Saneamento, Balneário Camboriú, Santa Catarina, Brasil
- Daniel Shemie The Nature Conservancy Freshwater Focal Area Program
- **P. James Dennedy-Frank** Stanford University Department of Environmental Earth System Science

THANK YOU!

tkroeger@tnc.org

